Thursday Jan 13th 2022 — Piotr Indyk from MIT

The first Foundations of Data Science virtual talk of this year will take place on Thursday, Jan 13th at 10:00 AM Pacific Time (13:00 Eastern Time, 19:00 Central European Time, 18:00 UTC). Piotr Indyk from MIT will speak about “Learning-Based Sampling and Streaming”.

Please register here to join the virtual talk.

Abstract: Classical algorithms typically provide “one size fits all” performance, and do not leverage properties or patterns in their inputs. A recent line of work aims to address this issue by developing algorithms that use machine learning predictions to improve their performance. In this talk I will present two examples of this type, in the context of streaming and sampling algorithms. In particular, I will show how to use machine learning predictions to improve the performance of (a) low-memory streaming algorithms for frequency estimation (ICLR’19), and (b) sampling algorithms for estimating the support size of a distribution (ICLR’21).   Both algorithms use an ML-based predictor that, given a data item, estimates the number of times the item occurs in the input data set.  

The talk will cover material from papers co-authored with  T Eden, CY Hsu, D Katabi, S Narayanan, R Rubinfeld, S Silwal, T Wagner and A Vakilian.

The series is supported by the NSF HDR TRIPODS Grant 1934846.

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

Create your website with
Get started
%d bloggers like this: